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Living biological systems display a fascinating ability to self-
organize their metabolism. This ability ultimately determines the
metabolic robustness that is fundamental to controlling cellular
behavior. However, fluctuations in metabolism can affect cellular
homeostasis through transient oscillations. For example, yeast cul-
tures exhibit rhythmic oscillatory behavior in high cell-density con-
tinuous cultures. Oscillatory behavior provides a unique opportunity
for quantitating the robustness of metabolism, as cells respond to
changes by inherently compromising metabolic efficiency. Here, we
quantify the limits of metabolic robustness in self-oscillating auto-
trophic continuous cultures of the gas-fermenting acetogen Clostrid-
ium autoethanogenum. Online gas analysis and high-resolution
temporal metabolomics showed oscillations in gas uptake rates and
extracellular byproducts synchronized with biomass levels. The data
show initial growth on CO, followed by growth on CO and H2. Growth
on CO and H2 results in an accelerated growth phase, after which
a downcycle is observed in synchrony with a loss in H2 uptake. In-
triguingly, oscillations are not linked to translational control, as no
differences were observed in protein expression during oscillations. In-
tracellular metabolomics analysis revealed decreasing levels of re-
dox ratios in synchrony with the cycles. We then developed a
thermodynamic metabolic flux analysis model to investigate
whether regulation in acetogens is controlled at the thermody-
namic level. We used endo- and exo-metabolomics data to
show that the thermodynamic driving force of critical reactions
collapsed as H2 uptake is lost. The oscillations are coordinated
with redox. The data indicate that metabolic oscillations in ace-
togen gas fermentation are controlled at the thermodynamic
level.

metabolic robustness | oscillations | acetogen | gas fermentation | Wood-
Ljungdahl pathway

Cells are capable of self-organizing their metabolism, using
chemical reactions that constantly break and build molecules

to extract energy. As energy is dissipated into the environment,
intrinsic characteristic and dynamic chemical patterns emerge (1).
Metabolism has evolved not merely to optimize a biological ob-
jective but, equally, to maintain metabolic robustness (i.e., capacity
to maintain metabolic homeostasis) (2, 3). Metabolism is hardwired
to anticipate and rapidly respond to abrupt internal and external
perturbations through adjusting metabolic flux distributions to
ensure cellular homeostasis.
Metabolic responses are generally fast, making it difficult to

analyze their dynamics and understand the specific mechanisms
underlying self-organization in a given species. However, some
biological systems will spontaneously develop stable oscillations
in continuous culture at high cell density (4–11). These oscil-
lating cultures offer an opportunity to understand fundamental
principles of metabolic regulation and what limits metabolism.
Oscillation in continuous yeast cultures has been studied exten-

sively, and several theories have been developed. One possibility
is that metabolite concentrations regulate gene expression and

trigger natural oscillators such as the cell cycle and circadian os-
cillators. For example, it was observed that acetyl-coenzyme A
(CoA) induces transcription of the G1 cyclin CLN3 in yeast (12).
Another theory is that oscillations are an inevitable side effect of a
trade-off between robustness and efficiency (13). Chandra et al.
demonstrated, using a simple glycolysis two-state model, that in an
autocatalytic system where 1 ATP is invested in the first step in
return for 2 ATP in the second step, the feed-forward regulated
system would tend to oscillate when pushed to its limit unless a
vast excess of enzyme capacity was available for the first step (13).
This hypothesis is aligned with the more general observation that
the sophisticated regulatory behavior observed in living systems is
a compromise between minimizing levels of metabolite pools and
the ability to efficiently utilize enzymes (14).
Spontaneous oscillations have been studied extensively in het-

erotrophs like yeast and Escherichia coli with highly evolved, com-
plex metabolisms. However, it is unclear whether the observations
made for regulation of these systems translate to the regulation of
primitive chemoautotrophic organisms. We recently reported os-
cillations in continuous cultures of the acetogen Clostridium
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autoethanogenum (15), where metabolism collapses, then recovers,
and repeats without external interference (e.g., adding antibiotics,
environmental shock). This self-oscillating system provides an ex-
cellent opportunity for deciphering the limits of metabolic ro-
bustness. Notably, acetogen metabolism operates at the limit of
thermodynamic feasibility (16, 17) while utilizing CO, CO2, and H2
as carbon and energy sources, using the Wood-Ljungdahl pathway
(WLP) (18, 19). Potential insights into the factors behind oscilla-
tions come from studies showing that maintenance of ATP ho-
meostasis controls autotrophic carbon distribution (15), and that
changes in metabolic flux rates are regulated at the post-
translational level (20, 21).
In this study, we replicated the oscillations to explore robust-

ness of acetogen metabolism. We performed high-resolution,
temporal sampling throughout the oscillatory cycles for proteo-
mics and metabolomics analyses. Online gas analysis showed that
the downcycle in biomass concentration coincided with a loss of
H2 uptake, which was only restored after a prolonged period with
CO as the sole energy and carbon source until cells recovered H2
uptake to replenish energy and accelerate growth. Thermody-
namic metabolic flux analysis (tMFA) using endo- and exo-
metabolomics data revealed that the thermodynamic driving
force of several critical reactions collapsed at the time of the loss
of H2 uptake. The results show that oscillations in an acetogen
growing on syngas is a result of the highly efficient redox and
energy metabolism combined with suppression of H2 metabolism
by CO. Our data suggest that oscillations are potentially a mean
of energy conservation, as previously suggested by others (22).

Results
Oscillatory Behavior of C. autoethanogenum Continuous Cultures.We
first triggered oscillations in continuous cultures of C. autoe-
thanogenum (15) and performed extensive sampling throughout
the cycles. Two biological replicate chemostat cultures at a di-
lution rate of 1 d−1 were grown on syngas (CO, H2, and CO2) as
the carbon and energy sources. Oscillations were triggered at 800
rpm, at which point cultivation parameters remained constant.
We reproducibly observed oscillations for ∼330 h (Fig. 1A), until
the supply of the gas feed from cylinders was exhausted. Cultures
were sampled around every 8 h for biomass, extracellular and
intracellular metabolomics, and proteomics covering a total of
four cycles. Gas uptake and production rates were obtained
continuously from the online mass spectrometer attached to the
bioreactors.
Our first observation from the gas data showed that CO up-

take rate (mmol/L/d) exhibited a nearly perfect synchronized
oscillatory behavior with the biomass concentration (Fig. 1A),
suggesting that continuous cultures were CO limited. The oscil-
lation cycles had a period of ∼6 d, whereas the amplitudes for
biomass concentration and CO uptake rate were ∼0.6 g dry cell
weight (gDCW)/L (minimum, ∼1; maximum, ∼1.6) and ∼580
mmol/L/d (minimum, ∼600; maximum, ∼1,200), respectively.
While it took the cultures ∼100 h to recover to maximum values,
the decrease to minimum values took half the time (∼50 h).
Strikingly, the H2 uptake rate was well synchronized with the
previous characteristics, with an amplitude of ∼360 mmol/L/
d (Fig. 1A). However, H2 uptake was lost entirely, in contrast to
CO, showing that oscillations are composed of sequential growth
phases: growth on CO, growth on CO and H2, and crash (slow
growth) on CO as energy and carbon source (purple arrows in
Fig. 1A).
The online gas analysis also revealed that cells immediately

counterbalanced lowered supply of reduced ferredoxin (Fdred)
from the loss of H2 uptake (see Fig. 3) by dissipating ∼1/3 more
CO as CO2 (SI Appendix, Fig. S1). Interestingly, it took ∼24 h
less for H2 uptake to recover compared wth the recovery of
biomass concentration and CO uptake rate (Fig. 1A). Recovery
of H2 uptake was potentially triggered by the culture becoming

CO-limited again (SI Appendix, Fig. S2), as prerecovery excess
levels of CO inhibited cellular hydrogenases, and thus H2 uptake
(23–25).

No Changes in Protein Expression Levels Were Observed during
Oscillations. To establish whether changes in cellular protein ex-
pression levels were responsible for the oscillatory behavior, we
conducted a thorough proteomics investigation, hypothesizing
first that translational changes control oscillations (26). We
performed quantitative proteomics using data-independent ac-
quisition mass spectrometry (27) to confidently quantitate ex-
pression of 596 proteins on average, with at least two peptides
per protein with high reproducibility (SI Appendix, Fig. S3A). We
compared protein expression between samples with lowest
(i.e., recovery) and highest (i.e., crash) biomass concentration
(Figs. 1 and 2) within each biological replicate culture. In-
triguingly, however, we detected no proteins being significantly
differentially expressed [fold-change, >1.5; q-value, <0.05 after
false discovery rate correction (28)] (SI Appendix, Fig. S3B). This
result is consistent with previous observations that show that
changes in protein expression do not regulate flux or product
distribution during autotrophic growth of acetogens (20, 21).
The lack of changes in protein expression levels points toward

posttranslational regulation of metabolism during oscillations.
Given the energy-limited nature of acetogen metabolism (16,
17), regulation of metabolic fluxes through the energetically
expensive processes of protein posttranslational modifications is
unlikely. Hence, as previously suggested by others, regulation by
thermodynamics through metabolite levels seemed feasible. It
has been suggested that acetogen metabolism operates at the
thermodynamic edge of feasibility (16, 17); that is, transformed
Gibbs free energy values of key reactions are close to zero. We
therefore next investigated the levels of metabolite concentra-
tions throughout the oscillation cycles.

Oscillations Are Coordinated by Redox. High-resolution temporal
sampling throughout the oscillation cycles revealed oscillations
in extracellular levels of acetate, ethanol, 2,3-butanediol, and
pyruvate (Fig. 1B). Interestingly, while changes in ethanol, 2,3-
butanediol, pyruvate, and biomass levels were synchronized, ac-
etate levels peaked ∼24 h after the rest.
Extensive sampling and liquid chromatography–mass spec-

trometry (LC-MS) analysis failed to show clear oscillations in
individual intracellular metabolite concentrations (Dataset S1).
However, the intracellular redox ratio of nicotinamide adenine
dinucleotide forms (NADH/NAD+) was synchronized with bio-
mass level, but with an opposite trend; for example, biomass
started to decline when NADH/NAD+ dropped to ∼0.012 and
recovered once a ratio of ∼0.022 was reached (Fig. 2A). The
ratio of nicotinamide adenine dinucleotide phosphate forms
(NADPH/NADP+) showed a peak just before onset of hydrogen
metabolism, which led to a rapid drop, and a possible second
peak in the decline phase (Fig. 2B). These trends potentially
indicated the importance of the Nfn transhydrogenase complex
(CAETHG_07665) behind oscillations, as it is a central control
valve of redox in acetogens (Fig. 3A). Indeed, the correlation
between Nfn’s thermodynamic driving force (i.e., NADH/
NAD+×NADP+/NADPH) and biomass levels suggests that Nfn
might play a central role also behind metabolic oscillations in C.
autoethanogenum (Fig. 2B).
tMFA. tMFA (29) was next used to determine the thermodynamic
driving force across central carbon and energy metabolism in
acetogens. The model comprises the WLP (18, 19), energy and
redox metabolism, acetate, ethanol, and 2,3-butanediol pro-
duction pathways for a total of 32 reactions and 32 metabolites
(Fig. 3A). We used the component contribution method to cal-
culate standard Gibbs free energy of reactions (30) together with
metabolomics data to determine reaction directionalities using
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thermodynamic variability analysis (see Materials and Methods
for details).
Mechanism for acetate transport. Since the efficiency of product
transport across the cell membrane influences the thermody-
namic equilibrium of reactions, especially for charged products
(31, 32), and because acetogens often divert a significant fraction
of substrate carbon into acetate production, we considered four
candidate mechanisms for acetate transport that each requires
different concentration gradients (Fig. 3B): transport of the
undissociated acid (i.e., passive diffusion), symport of the anion
with a proton, transport of anion via uniport, and ATP-
consuming transport (i.e., ABC type). We calculated the re-
quired acetate concentration gradients (Dataset S1) and used
them to constrain tMFA to check for thermodynamic feasibility.
Passive diffusion and symport of the anion with a proton are

thermodynamically equivalent and require almost molar level
intracellular acetate concentration to export against 8 g/L
(∼0.134 M) of extracellular acetate (Fig. 3B). tMFA shows that
there is no feasible flux distribution with such high internal ac-
etate concentration, and hence both these mechanisms can be
ruled out. While the ABC transporter is thermodynamically
feasible at very low intracellular concentrations, this mechanism
is rejected because acetate production generates less than 1 ATP
per acetate formed. In contrast, thermodynamically and ener-
getically feasible solutions were observed for the acetate uniport,
and we will use the uniport in our tMFA, rather than the proton

symporter commonly assumed in bacterial models (33). The
distinction is important because the uniport is associated with
indirect energy cost, since a proton must be transported in-
dependently to ensure charge balance. This proton can be
transported by the membrane-bound, multisubunit Fd-NAD+

oxido-reductase Rnf complex that generates the proton motive
force required to drive ATP synthesis through ATPase in C.
autoethanogenum (34, 35) or, alternatively, by the ATPase op-
erating in proton efflux mode; either option is associated with an
energy cost of a fraction of an ATP.
Pivotal role of the acetaldehyde:ferredoxin oxidoreductase in ethanol
production. Together with acetate, ethanol is the main byproduct
of acetogen growth. Generally, acetogens, including C. autoe-
thanogenum (36), have two routes for ethanol biosynthesis: the
conventional direct route from acetyl-CoA, using the bi-
functional aldehyde/alcohol dehydrogenase (AdhE), or the ATP-
coupled route through acetate, using the acetaldehyde:ferre-
doxin oxidoreductase (AOR) (Fig. 3A). Previous acetogen
-omics studies (15, 20, 21, 37, 38), as well as the study of AOR
knockouts (39), have shown that AOR plays a significant role in
ethanol production. Consistent with the latter, tMFA shows that
AdhE can only be active during the initial phase of CO-only
growth (E1 in Fig. 3C). Under CO+H2 growth and during the
crash, the reaction is thermodynamically infeasible in the ethanol
production direction (Gibbs free energy range >0), and AOR
(E2) is solely responsible (Gibbs free energy range <0) for the
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production of ethanol, assuming free diffusion of ethanol across
the membrane (40).
Interestingly, applying tMFA to our previous study of non-

oscillating (performed at lower gas transfer) CO-limited syngas
chemostat culture of C. autoethanogenum (15) shows that etha-
nol production through AdhE is also infeasible under true steady
state syngas conditions (Fig. 3C). This is consistent with the
conclusion reached in a recent study of a kinetic ensemble model
of C. autoethanogenum (41) that most kinetic parameters are
favorable for AdhE to operate toward acetyl-CoA. While they
used the same data set (15), they performed enzyme-by-enzyme
rather than network-based analysis and did not use measured
metabolite concentrations for calculating the reaction Gibbs free
energies, which leads to loose bounds (30) and may explain why
some models allowed flux through E1 in the ethanol direction.

Loss of AOR Driving Force May Trigger Crash. A high flux through
AOR is essential for simultaneous growth on CO and H2. AOR
is important for energy generation, reconstitution of oxidized
ferredoxin needed in the WLP, and regulation of intracellular
acetate levels (Fig. 3A). tMFA reveals that the AOR driving
force is very low in the crash; that is, a few hours after peak cell
density (Fig. 3C). It is much lower than the thermodynamic
driving force in the two growth phases and only half the level

seen in the previous steady state at lower cell density. Operating
near equilibrium and with no changes in enzyme concentration,
the flux is expected to be proportional to the driving force. Thus,
it is likely that the crash (i.e., slowing of growth to below di-
lution) is caused by a loss in AOR driving force as the external
ethanol concentrations increases.

Discussion
Homeostatic regulation is a fundamental biological process,
underlying cellular metabolism and physiology. Ideal homeo-
stasis robustly rejects internal and external disturbances, which
makes it very difficult to elucidate the detailed mechanism of
regulation. Observed in many systems, oscillations indicate an
imbalance between metabolic requirements affecting robustness
(13) and provides a unique window into homeostatic regulation.
Recently, oscillations without external interference were repor-
ted in acetogen continuous cultures (15). Here, we explored the
underlying mechanisms using proteomics, metabolomics, and
thermodynamic metabolic flux analysis.
The oscillations were relatively slow, lasting ∼150 h or 6 res-

idence times at D = 1 d−1 (Fig. 1). While this might have sug-
gested a transcriptional component to regulation, the absence of
changes in the proteome between high and low cell density in-
dicates that the mechanism is posttranscriptional.
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The oscillations are not inherent to high-density cultivations.
We have previously achieved steady state cultures at high cell
density, using pure CO (20) (SI Appendix, Fig. S6). Rather, the
oscillations are characterized by two key events around comet-
abolism of H2 and CO (Fig. 1). Onset of H2 uptake coincides
with increased growth rate and increased ethanol production,
which last until briefly before the onset of the crash (Fig. 1 and SI
Appendix, Figs. S1 and S5).
Cellular hydrogenases and H2 uptake are inhibited by excess

CO (23–25); hence, the onset of cometabolism only occurs when
CO is almost exhausted. Prior to the onset of cometabolism, cells
are effectively unaware of the H2 and are converging on a
(lower) steady state cell concentration reflecting CO transfer
only. Sudden access to H2 fuels rapid growth and ethanol pro-
duction until the AOR driving force (Fig. 3C) is exhausted and
cell growth slows. The crash is dramatically amplified by the
increase of CO leading to loss of H2 cometabolism. When this
happens, the cells are effectively located at a point with too high
biomass, ethanol, and acetate relative to the steady state point
defined by CO transfer only, and hence biomass quickly falls
until the cycle can repeat.

Here we show that redox imbalances, caused by cometabol-
izing H2 and CO, trigger these metabolic oscillations in ace-
togens. Acetogen metabolism operates at the thermodynamic
edge of life (16, 17). Our work describes in detail the sequence of
events that eventually trigger metabolic oscillations as follows.
During the CO-only growth phase, CO inhibited cellular hy-

drogenases, and thus H2 uptake (SI Appendix, Fig. S2). As the
biomass levels increase, H2 uptake eventually resumes, resulting
in a seemingly unsustainable acetate to ethanol ratio (SI Ap-
pendix, Fig. S4). The increased fraction of carbon excreted as
ethanol (refs. 15, 20 and SI Appendix, Figs. S4 and S5) and the
higher gas uptake rate inherently demands more redox in the
form of NADH and/or NADPH (Fig. 4). That redox imbalance
potentially serves as the initial starting point of the events
leading to oscillations. Regeneration of both redox types needs
the Rnf activity that consumes Fdred. This, however, causes di-
rect competition for Fdred between the Rnf complex and the
AOR (Fig. 4), which is responsible for ethanol production
(Fig. 3A). The competition is evident from the rapidly decreasing
thermodynamic driving force of the Nfn transhydrogenase
complex, with increasing gas uptake (Figs. 2B and 3C). At the
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same time, elevated throughput of the Rnf complex is required
to meet higher energy demands for acetate export at increasing
extracellular acetate levels (Fig. 1B), as the Rnf complex also
generates the proton motive force to drive the ATPase in C.
autoethanogenum (34, 35).
As indicated by the model, AOR is a near-equilibrium re-

action (see Results); thus, its directionality is sensitive to changes
in substrate/product concentrations. We hypothesize that the
increasing demand for Fdred by the Rnf complex coupled with
increase in ethanol concentration due to CO and H2 metabolism,
leads the AOR to loose its thermodynamic driving force and the
arrest of ethanol production, thus reducing the availability of
oxidized ferredoxin (Fig. 4B). This is evidenced by the delay
between the peaks of ethanol and acetate observed during

oscillations (Fig. 1B). The arrest of the AOR results in an in-
crease in the intracellular acetate concentration that further
enhances the demand for Fdred by the Rnf complex to maintain
the proton motive force. As a result, the WLP stops operation,
since the required reduced-to-oxidized Fd ratio for the oxidation
of CO cannot be maintained. This also rapidly shuts off H2 up-
take due to its close link to CO uptake for recycling oxidized
ferredoxin (Fig. 3A). Since the cells cannot uptake H2 for redox,
metabolism shifts to growth on CO only. Since the AOR is un-
able to produce ethanol, cells mainly produce acetate, and this is
evident from the increasing acetate concentrations even after
ethanol levels drop.
Concomitantly, Nfn driving force starts to recover (Fig. 2B)

while ethanol and acetate levels decrease (Fig. 2A). Eventually,
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AOR can again operate in the direction toward ethanol syn-
thesis, and thus CO uptake is recovered. H2 uptake is resumed,
resulting in an increased growth rate and a redox surplus which
eventually results in the crash (SI Appendix, Fig. S2).
Metabolite levels have been shown to regulate oscillatory be-

havior in yeast (4, 8–10, 12). Also, keeping the ratios of oxidized/
reduced redox species in check is generally fundamental to
maintain cellular homeostasis. Similar to glycolysis, the pathway
for carbon fixation in acetogens (the WLP) is tightly linked to
ratios of redox pairs (Fig. 4) and is aiming at producing ATP for
growth. Our results indicate that the imbalance of redox through
the driving force of the Nfn ultimately limits acetogen metabo-
lism, at least under oscillatory conditions. We thus conclude that
the Nfn transhydrogenase complex plays a pivotal role in acetogen
metabolism by operating as a valve. This is consistent with the ob-
servation that an Nfn deletion strain of C. autoethanogenum shows
nearly no growth during growth on syngas and CO2+H2 (37).
Maximizing energy conservation when resources are scarce is a

fundamental principle of biological systems that adapt to pertur-
bations rapidly. As acetogens live at the edge of thermodynamic
feasibility, where energy conservation is essential, acetogens offer
an ideal platform to understand and explore the hard limits of
metabolic robustness. Glycolytic oscillations in yeast have been
studied extensively for over half a century. Despite the enormous
number of studies looking at glycolytic oscillations, it is surprising
that the biological function of oscillations remains a mystery.
Similar to the WLP of acetogens, glycolysis is a central energy-
producing pathway with feed-forward regulation. In the WLP, the
first step requires redox as in glycolysis, where ATP is required in
the early steps. It has been suggested that glycolytic oscillations are
“a necessary consequence of autocatalysis and hard trade-offs
between robustness and efficiency (or fragility and overhead)”
(13). We show here that acetogen metabolism is controlled at the
thermodynamic level through metabolite concentrations, and
propose that an overshoot in the regulatory response potentially
triggers oscillations. This is in accordance with a previous study
which shows that cellular Gibbs energy dissipation rate limits
metabolism (42). However, it remains unclear whether these os-
cillations can be a mechanism of energy conservation, as pre-
viously suggested (22), or are just a limitation of the system.
Our study is important, as our comprehensive experimental

and computational analyses of oscillations in the gas-fermenting
acetogen C. autoethanogenum suggest factors potentially limiting
robustness of cellular metabolism. We provide a fundamental
understanding between carbon, redox, and energy metabolism
and product formation for a system relying on what was poten-
tially the first biochemical pathway on Earth (43–46). Our work
can also contribute toward expanding the product spectrum of
acetogens and increasing the efficiency of the acetogen gas fer-
mentation bioprocess through providing insights into potential
limits in acetogen metabolism.

Materials and Methods
tMFA. To calculate Gibbs free energy ranges (ΔrG’min, ΔrG’max) for each
metabolic reaction, it is necessary to calculate the standard Gibbs free en-
ergy values (ΔrG°) and the corresponding metabolite concentrations (29).
We used the component contribution method (30) to calculate the standard
transformed Gibbs free energies of metabolites and the corresponding SDs
to constrain reaction Gibbs free energies in the tMFA model, using an
implementation in Python. Reaction directionalities were determined using

thermodynamic variability analysis. Detailed methodology is available in
SI Appendix.

Bacterial Strain, Growth Medium, and Continuous Chemostat Culture
Conditions. As we hereby replicated the previously observed oscillatory be-
havior, full details of continuous cultures are reported in another work (15).
Shortly, C. autoethanogenum strain DSM 19630 was grown on syngas (50%
CO, 20% H2, 20% CO2, and 10% Ar; BOC Australia) in chemically defined
medium (without yeast extract) in continuous chemostat cultures (dilution
rate of 1.0 ± 0.03 d−1) under strictly anaerobic conditions at 37 °C and at pH
of 5. The gas-liquid transfer rate was increased by changing the agitation
rate until oscillations were triggered at ∼800 rpm, after which the culture
parameters remained constant.

Biomass Concentration Analysis. To estimate the culture biomass concentra-
tion (gDCW/L), we measured its optical density (OD) at 600 nm and used a
correlation coefficient of 0.21 determined in ref. 15 between sample OD and
dry cell weight.

Bioreactor Off-Gas Analysis. Bioreactor off-gas analysis for quantification of
gas uptake and production rates was performed by an online Hiden HPR-20-
QIC mass spectrometer as described in ref. 15 using the Faraday Cup
detector.

Extracellular and Intracellular Metabolomics. Samples collected for extracel-
lular metabolomics were filtered and stored at −20 °C until analysis using
high-performance liquid chromatography (HPLC), as described before (47).
Sampling, sample storage, and sample processing (extraction) for in-
tracellular metabolomics were performed as described before (15, 37, 48).
Targeted LC-MS/MS analysis was performed using a Shimadzu UPLC coupled
to a Shimadzu 8060 triple quadrupole mass spectrometer operated in neg-
ative ion mode while chromatographic separation was achieved on a Shim-
pack Velox SP-C18 UHPLC column (227-32001-04). Full details of LC-MS/MS
analysis are in SI Appendix.

Proteomics. Quantitative proteome analysis was carried out using a data-
independent acquisition mass spectrometry approach (27), with full details
in SI Appendix. Briefly, sampling, sample storage, and sample preparation
were performed as described earlier (20), with slight modifications specified
in SI Appendix. Mass spectrometry using LC-MS/MS was performed using a
Thermo Fisher Scientific UHPLC system coupled to a Q-Exactive HF-X mass
spectrometer. Analysis of data-independent acquisition data were per-
formed using Skyline (49), and differential protein expression analyzed using
MSstats (50) as described before (20), with modifications specified in
SI Appendix.

Data Availability. Proteomics data have been deposited to the Proteo-
meXchange Consortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository with the dataset identifier PXD016381. In-
tracellular metabolite concentration data of oscillating chemostat cultures
are available as Dataset S1.
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